
B5:	Mongoose	and	Information	Retrieval	 1	

COM644	Full-Stack	Web	and	App	Development	
	

Practical	B5:	Mongoose	and	Information	Retrieval	
	
	

Aims	
• To	demonstrate	the	implementation	of	GET	routes	in	Mongoose	
• To	implement	controller	logic	to	retrieve	collections		and	single	

documents	
• To	show	how	single	routes	can	respond	differently	to	varying	HTTP	

request	methods	
• To	introduce	a	technique	for	adding	_id	fields	to	sub-documents	in	a	

collection		
• To	demonstrate	the	retrieval	of	sub-documents	
• To	develop	controller	logic	to	handle	geo-location	queries	
• To	introduce	error-trapping	as	a	technique	for	“hardening”	of	an	API.	
• To	develop	logic	to	handle	a	range	of	error	scenarios		

Contents	
B5.1	IMPLEMENTING	GET	ROUTES	WITH	MONGOOSE	..	2	

B5.1.1	RETRIEVING	A	COLLECTION	OF	DOCUMENTS	..	2	
B5.1.2	RETRIEVING	A	SINGLE	DOCUMENT	BY	ID	..	3	

B5.2	WORKING	WITH	SUB-DOCUMENTS	...	4	
B5.2.1	ADDING	ADDITIONAL	ROUTES	..	4	
B5.2.2	ADDING	_ID	FIELDS	TO	SUB-DOCUMENTS	...	6	
B5.2.3	RETRIEVING	SUB-DOCUMENTS	...	8	

B5.3	GEO-LOCATION	QUERIES	..	11	

B5.4	ERROR	TRAPPING	...	14	
B5.4.1	THE	GOLDEN	RULES	OF	API	DESIGN	...	14	
B5.4.2	QUERYSTRING	ERRORS	..	14	
B5.4.3	DATABASE	ERRORS	...	16	
B5.4.4	MANY	ERROR	STATES	...	17	

	
	
	
	 	

B5:	Mongoose	and	Information	Retrieval	 2	

B5.1	Implementing	GET	routes	with	Mongoose		
	
In	the	previous	practical	we	created	the	data	model	that	we	will	now	use	for	all	of	our	
database	activity.		In	order	to	use	this	model	in	our	controllers,	we	first	need	to	require	it	
at	the	top	of	the	controllers	file.		This	will	replace	the	existing	code	that	references	the	
native	MongoDB	driver	and	is	presented	in	the	code	box	below.	
	
	

	
File:	B5/api/controllers/businesses.controllers.js	
	

var mongoose = require('mongoose');
var Business = mongoose.model('Business');

module.exports.businessesGetAll = function(req, res) {
...
}

...	

	
	
	
Once	defined,	we	will	address	all	database	activity	through	the	model.	
	
	
B5.1.1	Retrieving	a	collection	of	documents	
	
The	GET	/api/businesses	route	is	implemented	by	the	businessesGetAll()	controller,	
which	accepts	optional	querystring	parameters	start	and	number	and	uses	the	find()	
command	to	retrieve	a	selected	portion	of	the	data	set.		In	Mongoose,	we	use	the	find()
method	by	chaining	a	method	exec()	(meaning	‘execute’)	which	takes	a	callback	function	
that	is	fired	when	the	database	action	is	complete.		The	parameters	of	the	callback	function	
are	an	error	object,	populated	if	the	query	fails	and	a	data	object	that	will	contain	the	
documents	returned	from	the	query.	
	
The	following	code	box	illustrates	the	updated	code	for	businessesGetAll().		Note	that	
methods	skip()	and	limit()	are	still	available	to	us	–	Mongoose	makes	available	many	
of	the	methods	of	the	native	driver,	as	well	as	adding	additional	helper	functionality.	
		
	
	
	
	
	
	
	
	

B5:	Mongoose	and	Information	Retrieval	 3	

	
File:	B5/api/controllers/businesses.controllers.js	
	

module.exports.businessesGetAll = function(req, res) {

 var start = 0;
 var number = 5;

 if (req.query && req.query.start) {
 start = parseInt(req.query.start);
 }
 if (req.query && req.query.number) {
 number = parseInt(req.query.number);
 }

 Business
 .find()
 .skip(start)
 .limit(number)
 .exec(function(err, docs) {
 console.log("Retrieved data for " +
 docs.length + " businesses");
 res
 .status(200)
 .json(docs);
 });
}	

	
	
	
	
B5.1.2	Retrieving	a	single	document	by	ID	
	
Retrieving	a	single	document	by	ID	reveals	another	of	the	additional	helper	facilities	
provided	by	Mongoose.		In	the	previous	(native	driver)	version,	we	had	to	require	the	
ObjectID()	method	that		allowed	us	to	manipulate	_id	values,	but	Mongoose	provides	a	
findById()	method	that	will	accept	a	string	representation	of	an	_id	and	carries	out	all	
manipulation	internally.	
	
The	structure	of	the	findById()	method	within	the	businessesGetOne()	controller	is	
illustrated	by	the	following	code	box.	
	
			
	
	
	
	
	
	
	

B5:	Mongoose	and	Information	Retrieval	 4	

	
File:	B5/api/controllers/businesses.controllers.js	
	

module.exports.businessesGetOne = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET business " + businessID);
 Business
 .findById(businessID)
 .exec(function(err, doc) {
 res
 .status(200)
 .json(doc);
 });
}	

	
	
	
	
Try	it	now!	
	
Verify	the	operation	of	the	Mongoose	queries	by	running	the	mongod	progress,	starting	the	
application	and	presenting	the	URL	http://localhost:3000/api/businesses	to	a	web	browser	
to	check	the	businessesGetAll()	controller.		Now,	copy	one	of	the	business	_id	values	
from	the	browser	window	and	add	it	to	the	URL	to	create	an	address	of	the	form	
http://localhost:3000/api/businesses/1234567	and	check	the	businessesGetOne()	
controller.	
	
	
	

B5.2	Working	with	sub-documents		
	
All	of	our	database	work	so	far	has	been	at	the	level	of	individual	documents	or	collections	
of	documents.		However,	our	data	structure	requires	that	we	may	need	to	work	at	the	level	
of	sub-documents	–	for	example	when	retrieving	the	reviews	of	a	business	or	adding	a	new	
review.			
	
In	this	section,	we	will	see	how	to	manipulate	sub-documents	in	Mongoose,	and	also	update	
our	database	structure	so	that	all	sub-documents	have	individual	_id	fields.	
	
	
B5.2.1	Adding	additional	routes	
	
Before	we	can	specify	controller	functionality	for	sub-documents,	we	first	need	to	create	
the	new	routes	that	will	expose	this	functionality	to	our	users.		Examine	the	code	box	below	
that	creates	new	routes	to	retrieve	(i)	all	reviews	for	a	specific	business	and	(ii)	a	specific	

B5:	Mongoose	and	Information	Retrieval	 5	

review	for	a	specific	business,	where	the	business	and	review	are	identified	by	their	_id	
values.	
	
Note	also	that	we	choose	to	implement	the	reviews	controllers	in	a	new	JavaScript	file	
called	reviews.controllers.js.		We	could	equally	keep	all	controllers	in	a	single	file,	
but	it	is	better	practice	to	keep	related	controllers	together	in	this	way.	
	
	

	
File:	B5/api/routes/index.js	
	

var express = require('express');
var router = express.Router();

var businessesController =
 require('../controllers/businesses.controllers.js');

var reviewsController =
 require('../controllers/reviews.controllers.js');

router
 .route('/businesses/:businessID/reviews')
 .get (reviewsController.reviewsGetAll);

router
 .route('/businesses/:businessID/reviews/:reviewID')
 .get (reviewsController.reviewsGetOne);

...	

	
	
Also,	so	that	we	can	continue	to	run	the	application	while	we	develop	the	new	controllers,	
we	create	the	new	controller	file	reviews.controllers.js	and	create	skeleton	controller	
functions	for	reviewsGetAll()	and	reviewsGetOne().	
	
	

		
File:	B5/api/controllers/reviews.controllers.js	
	

var mongoose = require('mongoose');
var Business = mongoose.model('Business');

module.exports.reviewsGetAll = function(req, res) {

};

module.exports.reviewsGetOne = function(req, res) {

};	

B5:	Mongoose	and	Information	Retrieval	 6	

B5.2.2	Adding	_id	fields	to	Sub-documents	
	
Before	we	can	implement	the	new	controllers	reviewsGetAll()	and	
reviewsGetOne(),	we	need	to	address	a	limitation	of	our	data	set	–	namely	that	our	
review	elements	do	not	have	_id	values	on	which	to	query.		If	you	examine	the	JSON	data,	
you	will	find	that	a	review	element	does	contain	a	review_id	field,	but	we	have	no	way	of	
being	sure	that	this	is	a	valid	ObjectId()	value,	so	it	is	much	safer	to	create	our	own.	
	
The	best	way	to	generate	_id	fields	is	to	return	to	version	B3	of	the	application	(the	most	
recent	fully	working	version)	and	to	create	a	new	route	and	controller	to	make	this	
modification	to	the	database.	
	
Note:	This	part	of	the	exercise	should	be	carried	out	in	your	B3	application.		We	are	
currently	in	the	middle	of	converting	the	database	access	from	the	native	MongoDB	driver	
to	Mongoose,	and	B3	is	the	latest	fully	runnable	version	
	
Initially,	we	update	the	api/routes/index.js	file	to	create	a	new	route	for	the	controller	
	
	

	
File:	B3/api/routes/index.js	
	

...

router
 .route('/addReviewIDs')
 .get(businessesController.addReviewIDs);

...	

	
	
	
Now,	we	will	create	the	controller	by	adding	a	new	function	addReviewIDs()	to	
controllers.business.js.		It	is	worth	studying	this	function	carefully.			
	
First,	we	use	the	find()	and	toArray()	methods	to	obtain	the	complete	list	of	
documents	in	the	collection.		Then,	the	outer	for	loop	iterates	across	the	collection,	
extracting	the	business	_id	value	and	checking	for	the	presence	of	a	reviews	element.	
	
If	a	reviews	element	is	present,	we	then	read	it	into	the	reviews	variable	and	enter	the	
inner	for	loop	to	iterate	across	the	collection	of	reviews,	reading	the	review_id	element	
for	each	into	a	local	variable.	
	
Next,	we	use	the	MongoDB	update()	method	to	select	the	document	matching	the	
selected	business	ID	and	review	ID,	and	use	the	$set	operator	to	generate	a	new	_id	
element	for	the	review.	

B5:	Mongoose	and	Information	Retrieval	 7	

Note	the	use	of	the	$operator	in	reviews.$._id	–	this	is	a	marker	operator	that	will	be	
automatically	set	to	the	array	index	position	in	the	search	object	–	i.e.	update	the	same	
review	element	as	where	the	review_id	was	located.	
	
The	full	implementation	of	addReviewIDs()	is	presented	in	the	following	code	box.	
	
	

	
File:	B3/api/controllers/businesses.controllers.js	
	

module.exports.addReviewIDs = function(req, res) {
 var db = dbConnect.get();
 var collection = db.collection('business');

 collection
 .find()
 .toArray(function(err, docs) {
 for (var i = 0; i < docs.length; i++) {
 businessID = docs[i]._id;
 if (docs[i].reviews) {
 reviews = docs[i].reviews;
 for (var thisReview = 0;

 thisReview < reviews.length;
 thisReview++) {

 reviewID = reviews[thisReview].review_id;
 collection.update (
 { "_id" : businessID,
 "reviews.review_id" : reviewID },
 { $set : {
 "reviews.$._id" : ObjectId() }
 }
);
 }
 }
 }
 res
 .status(200)
 .json({ "Message" : "Review IDs added"});
 })
}	

	
	
We	can	run	this	controller	and	update	our	database	structure	by	re-starting	the	application	
and	presenting	the	URL	http://localhost:3000/addReviewIDs	to	a	web	browser.	
	
You	should	then	save	the	new	database	structure	to	a	JSON	file	by	the	command	
	

U:\B5>	mongoexport	--db	businessDB	--collection	business	--out	businessDB.json		
														--jsonArray	--pretty		

	
	

B5:	Mongoose	and	Information	Retrieval	 8	

B5.2.3	Retrieving	sub-documents	
	
Note:	We	will	now	continue	to	introduce	Mongoose	to	the	application,	so	return	at	this	
point	to	the	B5	files.	
	
Now	that	our	data	set	has	the	required	_id	values	for	each	review	element,	we	can	return	
to	the	new	controllers	reviewsGetAll()	and	reviewsGetOne().	
	
Fetching	all	reviews	is	actually	quite	trivial	and	the	implementation	is	almost	identical	to	
that	for	businessesGetOne()	–	with	only	two	differences.		First,	we	chain	the	select()	
method	to	the	find()	to	tell	Mongoose	that	we	only	require	the	reviews	elements	to	be	
returned.		Finally,	we	modify	the	JSON	response	so	that	only	the	reviews	element	is	
returned	to	the	browser.	
	
	

	
File:	B5/api/controllers/reviews.controllers.js	
	

module.exports.reviewsGetAll = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET businessID " + businessID);

 Business
 .findById(businessID)
 .select("reviews")
 .exec(function(err, doc) {
 res
 .status(200)
 .json(doc.reviews);
 });
};

	
	
Running	the	application	and	providing	the	_id	of	a	business	as	part	of	the	URL	(e.g.	
http://localhost:3000/api/businesses/589ddf35f3ff092e206f04ed/reviews)	generates	the	
browser	response	in	Figure	5.1	below.				
	
(NOTE	-	Remember	that	your	_id	values	will	be	different,	so	load	the	page	
http://localhost:3000/api/businesses	first	and	copy	a	business	_id	value	from	the	data	
presented.)	
	
	
	
	
	
	
	
	

B5:	Mongoose	and	Information	Retrieval	 9	

Try	it	now!	
	
The	effect	of	the	select()	method	is	not	immediately	apparent,	but	you	can	easily	see	its	
effect	by	adding	a	console.log(doc)	to	the	callback	function,	immediately	before	the	
res	statement.	
	
Run	the	application	and	view	the	output	generated	in	the	console.		Now	comment	out	the	
call	to	the	select()	method	and	run	the	application	again	to	see		clearly	the	difference	it	
makes.	

	
	
	

	
	

Figure	B5.1	Fetching	all	reviews	for	a	given	business	
	
	
	
The	controller	to	return	a	specific	review	by	ID	is	almost	identical	and	requires	us	to	obtain	
the	review	ID	from	the	querystring	parameter	and	then	to	use	it	in	the	Mongoose	id()	
method.		This	method	returns	a	sub-document	from	a	collection	iwhere	the	_id	value	
matches	that	provided	as	a	parameter.		The	following	code	box	presents	the	full	
implementation	of	reviewsGetOne().	
	
	
	
	
	
	

B5:	Mongoose	and	Information	Retrieval	 10	

	
File:	B5/api/controllers/reviews.controllers.js	
	

module.exports.reviewsGetOne = function(req, res) {
 var businessID = req.params.businessID;
 var reviewID = req.params.reviewID;
 console.log("GET reviewID " + reviewID);

 Business
 .findById(businessID)
 .select("reviews")
 .exec(function(err, doc) {
 var review = doc.reviews.id(reviewID);
 res
 .status(200)
 .json(review);
 });
};

	
	
Copying	a	review	ID	from	the	browser	after	the	previous	test	and	pasting	it	onto	the	URL	(to	
give	a	URL	in	the	form	http://localhost/businesses/businessID/reviews/reviewID)	generates	
output	as	shown	in	Figure	B5.2.	
	
	
	

	
	

Figure	B5.2	Fetching	a	specific	review	by	ID	
	 	

B5:	Mongoose	and	Information	Retrieval	 11	

B5.3	Geo-location	queries	
		
In	previous	practical,	we	laid	the	foundation	for	queries	based	on	location	by	defining	the	
location	element	in	the	schema	and	then	updating	the	database	to	provide	a	corresponding	
item	in	each	document.		We	will	now	illustrate	the	use	of	this	by	implementing	new	
functionality	that	returns	a	collection	of	businesses	sorted	in	order	of	proximity	to	the	
longitude	and	latitude	values	passed	as	querystring	parameters	(i.e.	“nearest	business	
first”).	
	
First,	we	need	to	consider	whether	a	geo-location	query	should	be	accessed	via	a	new	route	
or	whether	it	should	be	serviced	by	one	of	the	existing	routes.		Thinking	back	to	the	design	
principles	for	RESTful	APIs	(Section	B4.1),	we	recall	that	a	retrieval	operation	for	a	collection	
of	businesses	should	be	implemented	by	a	GET	request	to	api/businesses.		This	route	is	
already	implemented,	so	we	will	modify	its	associated	controller	(businessesGetAll())	
to	take	appropriate	action	if	querystring	parameters	for	longitude	and	latitude	are	passed	to	
this	endpoint.	
	
The	first	modification	to	the	controller	is	to	insert	a	new	test	to	check	for	the	presence	of	
lng	and	lat	values	in	the	querystring,	as	shown	in	the	following	code	box.			
	
	

	
File:	B5/api/controllers/businesses.controllers.js	
	

module.exports.businessesGetAll = function(req, res) {

 var start = 0;
 var number = 5

 if (req.query && req.query.lng && req.query.lat) {
 runGeoQuery(req, res);
 return;
 }

 ...

	
	
If	these	parameters	exist,	we	call	a	separate	function	runGeoQuery()	which	will	handle	
the	Geo-location	request,	with	the	return	statement	exiting	the	businessesGetAll	
controller	once	this	has	been	done.		As	we	are	passing	complete	control	to	the	new	
function,	we	also	need	to	pass	it	the	req	and	res	objects,	so	that	it	can	retrieve	the	
querystring	parameters	and	generate	the	HTTP	response.	
	
The	runGeoQuery()	function	operates	by	retrieving	the	lng	and	lat	parameters	and	
constructing	an	object	of	type	‘Point’,	with	the	parameters	making	up	a	coordinates	
array.		Next,	we	set	up	a	geoOptions	object,	specifying	that	the	coordinate	data	
represents	points	on	the	surface	of	a	sphere	(spherical : true),	that	the	maximum	
distance	we	want	to	consider	(in	this	case)	is	10000	metres	(10	km)	and	that	the	maximum	

B5:	Mongoose	and	Information	Retrieval	 12	

number	of	results	to	be	returned	should	be	5.		The	latter	two	parameters	can	be	changed	to	
suit	your	own	applications.	
	
Once	these	setup	stages	are	complete,	we	call	the	geoNear()	method	on	the	Business	
model,	passing	the	point	and	geoOptions	as	parameters,	as	well	as	a	callback	function,	
which	returns	an	error	object	(when	required),	the	results	object	and	a	stats	object.		In	
this	implementation,	we	output	the	stats	object	to	the	Console	and	return	the	results	
object	as	the	body	of	the	successful	HTTP	response.	
	
This	function	is	illustrated	by	the	code	box	below.	
	
	

	
File:	B5/api/controllers/businesses.controllers.js	
	

var runGeoQuery = function(req, res) {
 var lng = parseFloat(req.query.lng);
 var lat = parseFloat(req.query.lat);

 var point = {
 type : "Point",
 coordinates : [lng, lat]
 };

 var geoOptions = {
 spherical : true,
 maxDistance : 10000,
 num : 5
 }

 Business
 .geoNear(point, geoOptions,
 function(err, results, stats) {
 console.log("Geo stats", stats);
 res
 .status(200)
 .json(results);
 });
}

	
	
Re-starting	the	application	and	passing	a	URL	in	the	form	
http://localhost:3000/api/businesses?lng=121.121&lat=-3.1232	to	the	browser	will	result	in	
information	such	as	that	illustrated	in	Figure	B5.3	(overleaf)	displayed	in	the	Console.	
	
Note:		The	best	way	to	test	the	application	is	to	obtain	the	actual	coordinate	data	from	one	
of	the	businesses	and	to	use	that	data	in	the	URL.		In	this	way,	you	should	be	guaranteed	to	
get	at	least	one	result.	
	
	

B5:	Mongoose	and	Information	Retrieval	 13	

	
	

Figure	B5.3	Data	returned	from	the	geoNear()	query	
	

	
	
If	you	examine	the	data	returned	in	the	browser	(copy	the	data	and	paste	into	a	text	editor	
to	see	a	formatted	version	such	as	that	shown	in	Figure	B5.4	below),	you	can	see	that	the	
result	object	consists	of	an	array	where	each	element	has	two	properties	–	the	distance	
(metres)	from	the	coordinates	provided	and	the	original	document	that	matched	the	query.	
	
	
	

	
	

Figure	B5.4	Formatted	JSON	data	returned	from	geoNear()	

B5:	Mongoose	and	Information	Retrieval	 14	

	
Try	it	now!	
	
All	of	this	data	(in	the	result	and	stats	objects)	can	be	parsed	and	processed	by	your	
application	to	provide	a	much	richer	response	that	we	demonstrate	here.	
	
Try	modifying	the	application	so	that	ONLY	the	distance,	name	and	full_address	information	
for	each	business	is	returned,	together	with	the	figure	for	average	distance	generated	by	
the	stats	object.	
	

	

B5.4	Error	trapping	
	
Our	application	so	far	works	as	intended	as	long	as	the	URLs	provided	match	up	with	what	is	
expected	by	the	combination	of	router	and	controllers.		However,	we	have	yet	to	undertake	
any	significant	error	checking	and	as	the	application	grows	in	size,	it	is	important	now	to	
consider	this.	
	
	
B5.4.1	The	golden	rules	of	API	design	
	
Successful	error	trapping	can	be	best	achieved	by	following	the	three	golden	rules	of	API	
design	as	follows;	
	

I) Always	return	a	response.		The	browser	should	never	be	left	“hanging”	because	
the	server	cannot	process	the	request>	
	

II) Return	the	correct	HTTP	status	code.	
	

III) Always	return	either	contents	or	a	message.			An	empty	response	(especially	
when	a	request	has	been	declined)	gives	no	information	to	the	browser	(or	user	
of	the	API)	as	to	the	nature	of	the	problem.	
	

We	will	illustrate	these	by	highlighting	(and	implementing	remedies	for)	some	of	the	current	
flaws	in	our	application	as	it	currently	stands.	
	
	
B5.4.2	Querystring	errors	
	
First,	consider	the	businessesGetAll()	controller	–	we	have	implemented	functionality	
here	that	allows	the	user	to	provide	values	for	parameters	start	and	number,	to	specify	a	
portion	of	the	data	to	be	returned,	but	our	code	assumes	that	these	values	are	presented	as	
numeric	quantities.	
	

B5:	Mongoose	and	Information	Retrieval	 15	

Try	presenting	the	URL	http://localhost:3000/api/businesses?number=one	and	you	will	find	
that	a	collection	of	businesses	are	returned	–	but	not	with	the	size	that	we	attempted	to	
specify.		We	can	protect	against	this	by	implementing	type	checking	on	the	parameters	by	
adding	code	such	as	the	following	to	businessesGetAll().	
	
	

	
File:	B5/api/controllers/businesses.controllers.js	
	

 ...
 if (req.query && req.query.number) {
 number = parseInt(req.query.number);
 }

 if (isNaN(start) || isNaN(number)) {
 res
 .status(400)
 .json({"message":
 "If supplied in querystring, start
 and number must be numeric"});
 return;
 }
 ...

	
Now	restart	the	application	and	try	the	same	URL	again	–	this	time	you	should	see	the	JSON	
message	and	a	return	code	of	400	as	illustrated	in	Figure	B5.5	below.	
	
Next,	we	might	want	to	implement	range	checking	to	make	sure	the	values	provided	for	
start	and	number	are	not	out	of	a	sensible	range.		For	example,	we	may	later	design	our	
interface	so	that	only	a	maximum	of	10	businesses	at	a	time	will	be	displayed.		We	should	
therefore	protect	against	an	application	sending	a	value	that	exceeds	this.		Again,	we	can	do	
this	by	providing	additional	code	in	the	controller	to	compare	against	our	upper	limit.			
	
	

	
File:	B5/api/controllers/businesses.controllers.js	
	

 var maxNumber = 10;
 ...

 if (number > maxNumber) {
 res
 .status(400)
 .json({"message":
 "Max value for number is " + maxNumber});
 return;
 }
 ...

	

B5:	Mongoose	and	Information	Retrieval	 16	

	

	
	

Figure	B5.5	Data	type	checking	
	
	
B5.4.3	Database	errors	
	
All	of	our	database	requests	so	far	have	assumed	that	any	request	that	we	send	to	the	
database	will	result	in	a	successful	outcome.		However,	we	have	seen	that	the	Mongoose	
exec()	function	that	executes	the	database	query	returns	an	error	object	that	will	be	
populated	if	the	query	fails.		To	provide	a	reliable	API,	we	need	to	test	for	these	error	
objects	and	return	informative	messages	and	return	codes	when	they	are	detected.	
	
The	code	box	below	demonstrates	this	for	the	businessesGetAll()	controller.		Here,	we	
insert	new	code	into	the	exec()	callback	function	to	test	for	the	presence	of	the	err	
object	and,	when	it	is	found,	to	issue	a	return	code	500	(Internal	server	error)	and	to	send	
the	error	information	to	the	browser	as	the	body	of	the	response.		Where	the	err	object	is	
not	present,	we	return	the	data	with	a	200	OK	code	as	previously.	
	
	
	
	
	
	
	
	
	
	

B5:	Mongoose	and	Information	Retrieval	 17	

	
File:	B5/api/controllers/businesses.controllers.js	
	

module.exports.businessesGetAll = function(req, res) {

...

 Business
 .find()
 .skip(start)
 .limit(number)
 .exec(function(err, docs) {
 if (err) {
 console.log("Error finding businesses");
 res
 .status(500)
 .json(err)
 } else {
 console.log("Retrieved data for " +
 docs.length + " businesses");
 res
 .status(200)
 .json(docs);
 }
 });

...

	
	
	
B5.4.4	Many	error	states	
	
Occasionally,	failure	of	a	request	may	have	multiple	possible	causes	–	and	in	these	cases,	we	
should	be	careful	to	send	the	appropriate	response	for	each	possibility.		Consider	the	
businessesGetOne()	controller	which	responds	to	a	request	for	information	about	an	
individual	business,	identified	by	its	_id	value.			
	
Here	(as	in	the	previous	example),	we	may	have	a	database	error	that	prevents	the	request	
from	being	satisfied,	so	a	500	Internal	Server	Error	code	should	be	returned.		However,	it	
may	simply	be	that	the	_id	provided	did	not	correspond	to	one	in	the	collection.		In	this	
case,	the	database	has	correctly	responded	with	an	empty	result,	but	there	has	been	no	
error	and	the	correct	response	would	be	404	(File	not	found).	
	
Where	there	are	multiple	possibilities,	it	is	usually	better	to	avoid	nested	if…else	
statements,	each	with	its	own	exit	point;	but	to	set	default	values	for	the	response	code	and	
response	body	and	to	use	the	error	trapping	to	change	these	as	appropriate.	
	

B5:	Mongoose	and	Information	Retrieval	 18	

This	is	illustrated	in	the	following	code	box,	which	sets	a	default	response	code	of	200	and	a	
default	response	body	of	the	document	returned	by	the	query	–	and	then	tests	the	two	
error	possibilities	for	a	problem.	
	
First,	if	the	error	object	is	populated,	the	response	is	updated	so	that	the	code	is	500	and	
the	body	is	the	error	object	generated.		Next,	if	there	is	no	error,	but	also	no	response	
document,	the	code	is	set	to	404	and	an	appropriate	JSON	message	is	provided	as	the	body.			
	
Finally,	the	ultimate	values	of	the	response	object	are	returned	to	the	browser.	
	
	

	
File:	B5/api/controllers/businesses.controllers.js	
	

module.exports.businessesGetOne = function(req, res) {
 var businessID = req.params.businessID;
 console.log("GET business " + businessID);
 Business
 .findById(businessID)
 .exec(function(err, doc) {
 var response = {
 status : 200,
 message : doc
 }
 if (err) {
 response.status = 500;
 response.message = err
 } else if (!doc) {
 response.status = 404;
 response.message = { “message”:

 "Business ID not found" };
 }
 res
 .status(response.status)
 .json(response.message);
 });
}

	
	
	
Try	it	now!	
	
Add	additional	error	trapping	for	the	remaining	API	endpoints	dealing	with	geo-location	and	
reviews	by	using	similar	techniques	to	those	covered	in	this	section.	
	
	

